Углеродные нанотрубки для органических светодиодов

Светодиоды на основе полимеров (OLED) можно использовать для создания относительно недорогих лёгких гибких дисплеев. К сожалению, гибкость OLED ограничивает проводящий оксид индий-олова ITO, который используется в традиционных LED в качестве анода. Выход из ситуации был найден в использовании углеродных нанотрубок (УНТ) в качестве анода. Стоит отметить, что нанотрубки демонстрируют отличные механические свойства, что несомненно улучшает показатели гибкости OLED.

Ученые из Калифорнийского университета изучили возможность использования одностенных углеродных нанотрубок (ОУНТ) не только в качестве анода, но и катода OLED. При этом однако пришлось немного отступить от концепции традиционного OLED и использовать полимерную светоизлучающую электрохимическую ячейку (PLEC). PLEC состоит из светоизлучающего полимера и электролита в пропорции 20:10:1 в растворе тетрагидрофурана. Кратко принцип её действия можно описать так: при приложении напряжения ионы противоположного знака устремляются к соответствующим электродам, и по прошествии некоторого времени со стороны анода полимер оказывается «допированным» полимером p-типа, а со стороны катода – полимером n-типа. В центре наблюдается нейтральная область. Таким образом, получается структура p-i-n, и при приложенном напряжении PLEC люминесцируют.

В данной работе электроды из нанотрубок изготовили по стандартной технологии. Для этого ОУНТ предварительно промыли в водном растворе додецилсульфата натрия, подвергли воздействию ультразвука и пропустили через фильтр из пористого алюминия. Отфильтрованную массу из нанотрубок перенесли на полиэстеровую подложку (PET), а на готовый электрод методом центрифугирования нанесли слой активного полимера. Полученные плёнки при температуре 120 °C заламинировали в определённую структуру. При этом все технологические операции выполнялись в атомосфере азота при низкой влажности и низком содержании кислорода.

Синие PLEC выявили хорошие электролюминесцентные характеристики: низкое напряжение включения (3,8 В), эффективность 2,2 кд/A при яркости 480 кд/м2, яркость 1400 кд/м2 при 10 В. Все устройства оказались очень гибкими, их можно сворачивать в трубки до 5 мм в диаметре без видимых повреждений. К сожалению, при этом деградируют люминесцентные свойства PLEC. После 50 циклов сворачивания-разворачивания характеристики ухудшились до напряжения включения 4,7 В, яркости 870 кд/м2 и максимальной эффективности 0,8 кд/А при 980 кд/м2. Дальнейшие исследования будут направлены на улучшение стабильности характеристик PLEC при деформации.